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INTRODUCTION A S D  OUTLINE OF THE PRESENTATION 

The importance of interactions among the various disciplines in airplane wing design has been 
recognized for quite some time. With the introduction of high gain, high authority control systems 
and the design of thin, flexible, lightweight composite wings, the integrated treatment of control 
systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is 
underway now aimed at extending structural synthesis (Ref. 1) concepts and methods to the 
integrated synthesis of lifting surfaces, spanning the disciplines of structures, aerodynamics and 
control for both analysis and design. Mathematical modeling techniques are carefully selected to 
be accurate enough for preliminary design purposes of the ”complicated, built-up lifting surfaces 
of real aircraft with their multiple design criteria and tight constraints” (Ref. 2, p.17). The 
presentation opens with some observations on the multidisciplinary nature of wing design. A brief 
review of some available state of the art practical wing optimization programs and a brief review 
of current research effort in the field serve to illuminate the motivation and support the direction 
taken in our research.(These reviews are not exhaustive, and the interested reader is referred to the 
review papers, Refs. 3-8.) The goals of this research effort will be presented next, followed by a 
description of the analysis and behavior sensitivity techniques used. The presentation will 
conclude with a status report and some forecast of upcoming progress (Figure 1.). 

* BRIEF REVIE\i‘ OF  CURREYT WISG OPTI~I IZATIOS CAPABILITIES 
AND RESEARCH ACTIVITY, SOME OBSERVATIONS 

* GOALS FOR MULTIDISCIPLINARY WING SYNTHESIS RESEARCH AI’  UCLA 

* DESCRIPTION OF ANALYSIS TECHNIQUES CHOSEh: 

* STATUS REPORT O S  THE SYNTHESIS CAPABILITY UNDER DEVELOPMEKT 

Figure 1 
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THE MULTIDISCIPLINARY NATURE OF WIKG DESIGN 

Figure 2 describes the multidisciplinary nature of wing design. Discussion is limited to wings 
operating in the subsonic to low supersonic fight speeds, so that thermal effects can be neglected. 
It is instructive to unite the sets of Preassigned Parameters and Design Variables (Ref. 1) into the 
set of ”Design Parameters”, whose elements define a particular wing design. Which of the 
parameters will be preassigned and which will be used as design variables depends on the level of 
application for optimization techniques in the hierarchy described in Ref. 1, namely, whether the 
design space includes sizing, configuration (geometry) or topological design variables. The set of 
behavior functions, from which constraints and objectives will be selected, can be divided into two 
categories. Primary (system level) Behavior Functions are those performance measures which 
determine the overall quality and competitiveness of the wing. Secondary (sub-system level) 
Behavior Functions are the behavior functions which must be taken into account during the 
design to guarantee the prevention of failure in all possible failure modes and introduce known 
constraints on subsystem performance. They are usually not the real design objectives although 
sometimes there is high correlation between a secondary behavior and a primary behavior 
function (e.g. mass and airplane performance). 
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SOME EXISTING PROGRAMS FOR PRACTICAL WISG OPTIMIZATION 

Several approaches, with a varying degree of multidisciplinary capability, aimed at the synthesis of 
practical composite wings were developed during the seventies (Refs. 3-8). In addition to the 
constraints on stress, displacement and aeroelastic stability, performance constraints in terms of 
induced drag or drag polar specification were added in the TSO computer code (Refs. 9,lO) and to 
WIDOWAC (Refs. 11- 13). It was reported recently that a rudimentary servoaeroelastic analysis 
capability was about to be inserted into the ASTROS computer code (Ref. 14). It should be 
noticed that except for the TSO code, the design space in the programs contains only structural 
design variables, thus they are really multidisciplinary in analysis only. The TSO code makes it 
possible to include some configuration design variables (the fiber orientation of cover skin layers) 
and some aerodynamic constraints in the form of wing twist or camber distribution under load 
(Figure 3.). 

PROGRAMS SURVEYED : 
TSO. FASTOP, WIDOWAC. ELFINI. ASTROS 

hSALYSIS PROBLEM 

DISCIPLISES : 
STRUCTURES, AERODYSAiMICS, AEROELASTICITY 

SIODELISG : 

STRUCTURAL : 
EQUIVALENT PLATE (TSO) 
FISITE ELEMENTS (FASTOP.\VIDOWAC.ELFINI.ASTROS) 

AERO DY SAXllC : 
STEADY A\ERODYYA.UICS : 

LINEAR POTESTIAL PANEL METIIODS (e& Woodward in TSO) 
USSTEADY r\ERODYNAhlICS : 

* DOUBLET LATTICE ( h l <  I ) (TSO. FASTOP. ASTROS) 
KERNEL FIJSCTION ( bl< I \ (WIDOWAC\ 

- I  

* M A c i f i O x (  ci> I ) (FASTOP)' 
POTENTIAL GRADIENT METHOD ( M >  I ) (ASTROS) 
PISTON THEORY ( M > > 1 ) (WIDOWAC) 

~ 

BEHAVIOR SENSITIVITY 
* ANALYTIC (FASTOP, WIDOWAC, ELFINI, ASTROS) 
* FINITE DIFFERENCES (TSO) 

SYNTHESIS PROBLEM 

PREASSIGNED PARAiMETERS : 
PLANFORM SHAPE, CROSS SECTION, STRUCTURAL TOPOLOGY, .MATERIALS 

DESIGN VARIABLES : 
* STRUCTURAL SIZING (TSO - ALSO FIBER ORIENTATION ) 

CONSTRAINTS : 
* DEFLECTION. STRESS, FLUTTER, DIVERGENCE. CONTROL EFFECTIVENESS 

DRAG (TSO. WIDOWAC) 
BUCKLING (ELFINI, ADDED TO WIDOWAC IN A SliMPLlFlED FORIM) 

OBJECTIVE FUNCTIONS : 
MASS, DRAG, CONTROL EFFECTIVENESS 

OPTIMIZATION 
MATH PROGRAiMMlNG (TSO) 

* MATH PROGRA,MMING + APPROXIMATION CONCEPTS (WIDOWAC, ELFINI. 
ASTROS) 

OPTIMALIN CRITERIA (FASTOP) 

Figure 3 



THE NEED FOR MULTIDISCIPLINARY WING OPTIMIZATION 

During the last decade structural synthesis has matured. Realistic designs described by a large 
number of design variables and subject to a variety of load conditions can now be efficiently 
treated. However, it is still quite common to find fixes and modifications being introduced late in 
the development stage of fighter aircraft, when aeroservoelastic effects, rigid body- elastic mode 
coupling or static aeroelastic effects have not been properly accounted for in the design process 
(Refs. 15-20). At the same time, following almost twenty years of progress in active flutter 
suppression and gust alleviation (Refs. 22-26), there is a growing recognition that multidisciplinary 
interactions might be hamessed to benefit modem, complex wing designs. However, a review of 
the literature reveals that the application of modem optimization methods to wing design 
problems involving multiple objective functions and a diverse mix of constraints based on 
analyses from several discipline areas (e.g. structures, structural dynamics, controls, aerodynamics 
and performance) has not yet been treated in a comprehensive and realistic manner. To 
overcome the inherent complexity and address the computationally intensive nature of this 
problem two approaches have been suggested in the literature. The first approach is based on the 
application of multi-level decomposition techniques combined with existing tools for detailed 
analysis and sensitivity analysis for each of the disciplines (Refs. 27,28). The second approach 
attempts to gain some insight into the nature of the problem by using highly simplified 
mathematical models or simple airplane configurations for structural, aerodynamic and control 
system analysis (Refs. 29-35). Research is now under way in several research centers and 
universities in two main directions : 
a) the addition of control system sizing type design variables to a design space spanning design 
variables for structures and control (control augmented aeroelastic optimization) (Refs. 3 1,36) 
b) expanding the wing design space by adding configuration design variables (structural and 
aerodynamic shape) (Refs. 37-39) (Figure 4.). 
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Figure 4 
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RESEARCH GOALS 

In Ref. 2 Ashley writes :" In the absence of experience when new technology is being tried for the 
first time, the search for extremas can produce unanticipated, surprising and often very 
satisfactory discoveries". But he adds a word of caution : "Yet the counterintuitive may also be 
counterproductive and even ridiculous. Very undesirable consequences can result from omission 
or careless handling of constraints". 
It is one of the major goals of the present research to begin to bridge the gap between over 
idealized modeling and detajled structural and aerodynamic modeling by introducing balanced 
design and analysis models that capture the essential behavior characteristics, without making the 
integrated multidisciplinary design optimization task intractable. This balanced approach 
combines high quality, approximate, but computationally efficient analyses for the structural, 
aerodynamic and aeroservoelastic behavior of realistic composite wings. Thus, the entire 
optimization problem may be treated at one level without the need for multilevel decomposition. 
A rich variety of constraints makes it possible to study the effect of multidisciplinary interactions 
on synthesis as well as on analysis (Figure 5.). 

OBJECTIVES : 

DEVELOP WULTIDISCIPLINARY WING SYNTHESIS CAPABILITY WITH AN 
EMPHASIS ON STRUCTURElCONTROL/UNSTEADY AERODYBAMICS 
INTERACTION 

BRIDGE THE GAP IN .MODELING DETAIL BETIVEEN THE VERY SIMPLE AND 
DETAILED AXALYSIS TECHNIQUES SO AS TO ENABLE MULTIDISCIPLINARY 
SYNTHESIS OF REAL WISGS FOR PRELIMINARY DESIGN 

STUDY THE CONSTRUCTION OF ROBUST APPROXIMATIONS T O  BEHAVIOR 
FUNCTIONS 

PROVIDE A TEST CASE FOR ASSESSING DECOMPOSITION TECHNIQUES 

SELECTED APPROACH 

ANALYSIS : 

CAREFUL SELECTION O F  ANALYSIS TECHNIQUES - 
GOOD ACCURACY 
HIGH COMPUTATIONAL SPEED 
BALANCED APPROACH 

BEHAVIOR SENSITIVITY : 

ANALYTIC 

SYNTHESIS PROBLEM : 

SIZING : 
STRUCTURALAERODYNAMIC AND CONTROL D.V.'s PLUS 9, 'I 

PREASSIGNED : SHAPE, TOPOLOGY 

CONSTRAINTS : b , 8 ,  SERVOAEROELASIC STABILITY, CONTROL POWER 

ALTERNATIVE 0 BJECTIVE FUNCTIONS : .MASS, PERFORMANCE MEASURES 

OPTIMIZATION STRATEGY : 

MATH PROGRAMMING + APPROXIMATION CONCEPTS 
( 10 ANALYSES PER OPTlMIZATlON - GOAL) 

Figure 5 
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ANALYSIS METHODS SELECTED 

The integrated optimum design capability outlined here is based on approximate analysis 
techniques for the required disciplines, which are consistent with each other in terns of accuracy 
and efficiency and lead to a balanced treatment. In the structures area, an equivalent plate 
analysis, as incorporated in the TSO computer code (Ref. 10) and further generalized by Giles 
(Refs. 37-39), is used. Although the equivalent plate approach for structural modeling of low 
aspect ratio wings has been known for many years, it was Giles who recently showed that, using 
present day computers, a single high order power series can be used for approximating 
displacements over wing planforms made of several trapezoidal segments to obtain accurate stress 
as well as displacement information. The simplicity of manipulating simple power series leads to 
analytic rather than numerical integration for the mass and stiffness expressions. With the careful 
organization of computer storage space and ordering of calculations, major savings can be 
achieved in terms of computation times and core storage requirements. The extended equivalent 
plate approach is integrated with the PCKFM (Piecewise Contipuous Kernel Function Method) 
of Nissim and Lottati for lifting surface unsteady.aerodynamics (Refs. 40-43). This method 
combines the power of the doublet lattice method in dealing with pressure singularhies with the 
accuracy and speed of the kernel function method. Extensive numerical experimentation has 
demonstrated (Ref. 40) that the PCKFM method is highly accurate and converges rapidly. For 
configurations involving control surfaces, it is faster and considerably more accurate than the 
doublet lattice method. Thus, it is especially suited for calculating the generalized unsteady air 
loads (on lifting surfaces made up of wing and control surface elements) that are needed for active 
flutter suppression and gust alleviation studies. 

For the finte state modeling of the unsteady air loads, the Minimum State Method of Karpel 
(Ref. 44) is used to generate accurate approximations to unsteady generalized aerodynamic forces 
with addition of only a small number of augmented states to the mathematical model of the 
aeroservoelastic system. In comparison with other finite state modeling techniques, the number of 
added states needed in the minimum state method can be smaller for the same overall accuracy of 
approximation (Ref. 45). This leads to a state space model of lower order, thus reducing memory 
requirements and computation times considerably. The integrated servoaeroelastic system is 
modeled as a Linear Time Invariant (LTI) system and its stability is examined by computing the 
eigenvalues of a generalized eigenvalue problem (Figure 6.). 

STRUCTURE : 

EQUIVALENT PLATE 

AERODYNAiMlCS : 

SUBSONIC,’SUPERSONIC LIFTISG SURFACE PIECEWISE 
FUSCTION METHOD (PCKFM) (SISSIM/LOTTATI) 

UNSTEADY AERODYNAMIC FINITE STATE MODELISG : 

MINIMUM STATE APPROXIAMATION 

CONTINUOUS KERNEL 

CONTROL : 

STATE SPACE LTI SYSTEM MODELING 

Figure 6 
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EQUIVALENT PLATE MODELLING OF AIRPLANE/ WING/ CONTROL SURFACE 
ASSEMBLIES BY THE PRESENT CAPABILITY 

Figure 7 shows an airplane modeled as an assembly of flexible lifting surfaces. Each lifting 
surface is modeled as an equivalent plate whose stiffness is controlled by contribution from thin 
cover skins (fiber composite laminates). and the internal structure (spar and rib caps). Plate 
sections are connected to each other via stiff springs (to impose displacement compatibility at 
attach points) and flexible springs (representing the stiffness of actuators and their backup 
structure). Each wing section can be made of several trapezoidal parts continuously connected to 
each other. Concentrated masses are used to model nonstructural items and balance masses. 

The present equivalent plate modeling capability makes it possible to efficiently analyze 
combined wing boxlcontrol surface configurations. A wing assembly and a canard or horizontal 
tail may be attached to a fuselage (modeled as a flexible beam or a flexible plate) to simulate 
complete airplane configurations. Modeling detail of all plate sections can be identical. Thus the 
degree of detail in modeling control surfaces for analysis and synthesis is not limited, as is the case 
in the TSO code. 
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SOME ANALYTICAL ASPECTS OF THE EQUIVALENT PLATE APPROACH 

It is a well known fact in the numerical solution of partial differential equations that the use of 
a simple polynomial series to approximate the solution in a Ritz or Galerkin analysis leads to ill 
conditioning of the problem matrices when it is of an order higher than a certain degree. 
However, Giles (Refs. 37,38) has shown that when a simple polynomial series is used in a Ritz 
solution of anisotropic plate static and dynamic problems, accurate displacements, stresses and 
natural frequencies can be obtained for practical wings before ill conditioning appear. His results 
were obtained on a CDC Cyber 173 (60 bit words). Our results obtained on an IBM 3090 
computer in extended precision and on a SUN 3/280 computer using double precision support his 
findings. When the depth of the wing and the thickness distribution of skin layers are also 
expressed as power series, it can be shown that the stiffness and mass matrices are expressed as 
linear combinations of certain area and line integrals and polynomial terms calculated at points 
where wing section are connected or where concentrated masses are placed. These integrals and 
polynomial tables are fixed once a planform shape is given. Thus they are evaluated only once at 
the beginning of an optimization task. This leads to major computation time savings along with 
the fact that the relatively small number of generalized coordinates needed to accurately 
approximate displacement and stresses in a wing section (about 21-30) result in small mass and 
stiffness matrices(although fully populated) compared with finite element analysis (Figure 8.). 

POLYSOMIAL FUSCTIOSS : 

THE SHAPE FUNCTIONS : Axy)  = xm p 

A TYPICAL SKIN LAYER THICKNESS DISTRIBUTION : r(xy)= ZT, X* y' 
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c It  
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-m 
WING DEPTH : &a)= ZH, F p 

SPARI'RIB CROSS SECTIONAL AREA : A(x) = A ,  + cl,x 

(r,s DEPEND ON i) 
-1 

FUNDA,MENTAL INTEGRALS : 

AREA INTEGRAL OVER A SKIN TRAPEZOIDAL SECTION : f, = // X* y" dxdy 

LIXE INTEGRAL OVER THE LEXGTH OF A RIB : Itd = fi X" dr 

LINE INTEGRAL OVER THE LENGTH OF A SPAR : f? = I;;," .dyF p dy 

ASSEMBLY : 
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INTEGRAL TERMS WITH VARYING INDICES : (m,n) 

'F 

DISPLACEMENT RITZ SERIES FOR TWO WING SECTIONS CONNECTED TO EACH 
OTHER VIA SPRINGS : 

w, = [ ...... (XI)-' (YIP' ..... ] (q,} w,= [ ...... ( X 2 F  (Y2p .... 3 (q2} 

FUNDAiMENTAL POLYNOMIAL TERM TABLES : 

ASSEMBLY : 
AlTACHMENT CONTRIBUTION 
COMBINATION OF POLYNOMIAL 
TABLES. 

TO STIFFNESS MATRIX IS A LINEAR 
TERMS TAKEN FROM THE FUNDAiMENTAL 

Figure 8 
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FEATURES OF THE PRESENT EQUIVALENT PLATE MODELLISG 

In order to structurally analyze (statics and dynamics) wing/control surface/ canard or tail 
configurations and to accelerate the generation of approximate problems for synthesis, the 
equivalent plate approach of GiIes was further extended to include multi-element Wing 
box/control surfaces plus analytic behavior sensitivity derivatives with respect to structural design 
variables. Stiffness and mass matrices can now be generated using analytic integration for wing 
structures made of composite skins, spars and ribs, concentrated masses and equivalent springs 
which connect plate sections to each other (Figure 9.). 

COSFIGLRATIOSS MODELLED ISCLUDE : 

WIXG COhTROL SURFACE/ CAKARD/ FUSELAGE ASSEMBLIES 

FUSELAGE A S D  MISSILES CAK BE MODELLED AS EQUIVALENT BEAMS 

DESIGS VARIABLES INCLUDE : 

SKIN LAYER THICKNESS DISTRIBUTIOK POLYNOMIAL COEFFICIENTS, 

SPAR' RIB CAP AREA DISTRIBUTION (LIKEAR ALONG SPAR/RIB LINE) 

COXCEKTRATED MASSES 

LINEAR AND ROTATIONAL SPRING STIFFNESSES 

ANALYSIS CAPABILITY : 

FAST STIFFNESS,MASS MATRIX GENERATION 

STATIC SOLLTIOS FOR DISPLACEMENTS AND STRESSES UNDER GIVEK LOADS 

CALCULATIOY OF NATURAL FREQUENCIES AND MODE SHAPES 

SESSITIVITY : 

ASALITIC BEHAVIOR SENSITIVITY ANALYSIS FOR DISPLACEMESTS, SLOPE, 
QUADRATIC FAILURE CRITERIA FOR STRESSES IN SKINS, STRESSES IN 
SPAR'RIB CAPS 

ADJOIST OR DIRECT METHOD - OPTIONAL 

Figure 9 
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KUMERICAL TESTING 

Extensive numerical tests were carried out to study the accuracy of the present equivalent plate 
modeling and assess its computational efficiency. Several wings of different construction, aspect 
ratio and thickness were used. Displacements, stresses in skins and spar caps as well as natural 
frequencies and mode shapes were compared to finite element results and to test results where 
available. As an example, Figure 10 includes a comparison between YF16 wing natural 
frequencies calculated using a detailed finite element analysis, the TSO program and our present 
structural module. The YF16 wing configuration includes a wing box plus a leading edge flap and 
a flaperon. The results demonstrate the accuracy of the new multi-element equivalent plate 
modeling capability in analyzing wing/ control surface configurations. Some ground vibration test 
results available ,in Ref. 46 made it possible to check the accuracy of the present code when a 
fuselage,wing,control surfaces and tip missile configuration is analyzed. Although the fust bending 
frequency of the cantilevered wing as calculated here is 6.5% below the reference result, it is 
somewhat sensitive to the modeling of root structure and a better correlation can be achieved by 
tuning the springs representing root and wingfuselage attachment flexibility. Overall the 
correlation is good, and further refinement of the model seems unnecessary at this stage. 

EQUIVALENT PLATE CAPABILITY TESTING 

NATURAL FREQUEKCIES (HZ) OF THE YF16 

CANTILEVERED WING/LE FLAPL 

FLAPEROY ASSEMBLY 
F-F A/C WITH WING TIP 

MISSILES (ANTI-SYMMETRIC) 

No. F.E.M TSO PRESEhT 
(REF.10) (REF.10) CODE 

1 10.67 10.74 9.98 
2 33.92 35.05 34.98 
3 35.73 42.75 36.48 
4 56.45 64.24 54.02 
5 62.47 73.43 65.28 
6 67.96 95.31 73.57 

No. GVT PRESEhT 
(REF.46) CODE 

1 6.5 6.30 
(Missile 
Pitch) 
2 8.0 7.99 
(Wing 1st 
Bending) 

Figure 10 
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NUMERICAL TESTIKG (CONCLUDED) 

The first six mode shapes for the cantilevered YF16 example (without tip missile), generated 
by the new multi-element equivalent plate analysis, are shown in Fig. 11. These mode shapes 
correlate well with finite element results reported in Ref. 10. The quality of this correlation can be 
attributed to the high order of control surface displacement representation and better modeling of 
elastic point attachment of the control surfaces to the wing box. 

A typical computation time for the static analysis of the wing of Ref. 37 (including the calculation 
of 384 displacement, slope and stress constraints and their sensitivities with respect to inner and 
outer panel skin thicknesses at an array of points over the wing) is 12.6 cpu seconds on the 
UCLA IBM 3090. Analysis and constraint generation for YF16 six static load cases and natural 
modes take 18.9 seconds. These relatively short computation times are essential to the 
construction of an efficient multidisciplinary synthesis capability. 

\IODE SHAPES OF THE YF16 CASTILEVERED WISG 

MODE 2 
\IODE I 

MODE 4 
XIODE 3 

i 
MODE 5 

.MODE 6 
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LIFTING SURFACE UNSTEADY AERODYNAMICS :THE PCKF METHOD 

Along the line of improving the mathematical modeling of the servoaeroelastic wing dynamic 
system, the use of lifting surface theory (Refs. 47,48) for the calculation of the unsteady 
aerodynamic loads is considered a d e f ~ t e  step forward compared with strip theories. Lifting 
surface aerodynamics are still widely accepted in the aerospace industry for the flutter and gust 
response analysis of airplanes in the subsonic and supersonic speed regimes. Thus including lifting 
surface modeling in the analysis part of a multidisciplinary wing synthesis is important if the 
synthesis of real wings is sought. 

In the PCKF method for the solution of the integral equation relating downwash and pressure 
distribution over a lifting surface (Refs. 40-43) an assembly of lifting surfaces is divided into a 
group of trapezoidal boxes, as shown in Fig, 12 for a subsonic case. 

MODELING A CONFIGURATION BY AN ASSEMBLY OF TRAPEZOIDAL BOXES : 
(SUBSOXIC) 
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THE PCKF METHOD : SOME ANALYTICAL ASPECTS 

The pressure distribution on each box is approximated by weighting functions representing the 
known pressure singularities along the box edges multiplied by a series of polynomials orthogonal 
to these weighting functions. Collocation points over the planform are chosen so as to minimize 
the error in the pressure integrals needed to calculate generalized aerodynamic forces. The PCKF 
method is fast, accurate and especially suited to handle winglcontrol surface configurations. It is 
more accurate than the vortex lattice method especially when leading edge flaps or controls with 
gaps around them are considered (Ref. 40). This is due to the inability of lattice methods to 
impose the pressure singularities along the different boundaries of the wing. In the present 
application it is integrated with the equivalent plate structural analysis to generate a set of 
generalized loads for the same generalized polynomial coordinates used for structural analysis. The 
number of collocation points per box and the number of integration points used arc carefully 
selected to be compatible with the order of displacement polynomials used (Figure 13.). 

POLYKOMIAL SERIES APPROXIMATIO?; FOR PRESSURE OVER A BOX : 

W l ) ,  ..tt) : 
WEIGHT FUKCTIONS REPRESENTING KNOWX PRESSURE SINGULARITY ALONG 
BOX EDGES 

COLLOCATIOK POINT PLACEMENT : OPTIMAL SO AS TO R.IIKIbIIZE ERROR IN 
PRESSURE INTEGRALS ( GENERALIZED AERODYNAMIC FORCES ) 

ADVASTAGES : 

SUBSONIC / SUPERSONIC 

GENERAL NON PLANAR WING/CONTROL SURFACE CONFIGURATIONS 

FAST CONVERGENCE OF GENERALIZED LOADS WITH INCREASED NUMBER OF 
POLYNOMIALS - HIGH COMPUTATIONAL SPEED 

GOOD ACCURACY OF CONTROL SURFACE HINGE MOMENT AND CONTROL 
SURFACE DERIVATIVES (VORTEX LATTICE METHOD OVERPREDICTS HINGE 

EXTENSIVE NUMERICAL TESTING BY THE DEVELOPERS FOLLOWED BY 

MOMENTS) - IMPORTANT FOR SERVOAEROELASTIC MODELING 

ACCURATE RESULTS IN THE FLUTTER AND SERVOAEROELASTIC ANALYSIS OF 
THE F16 I N  AN INDUSTRY ENVIROSMENT 

A DEFINITE IMPROVEMENT OVER STRIP THEORIES 

Figure 13 
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UNSTEADY AERODYNAMICS FINITE STATE MODELING 

The generalized aerodynamic loads in the Laplace transformed small perturbation equations of 
motion (for a steady level flight) given below are transcendental functions of the Laplace variabIe 
s. The flight dynamic pressure and flight speed are qD, UW respectively; M,C,K are the 
mass,damping and stiffness matrices; Ms,Much) is the matrix of generalized aerodynamic forces in 
the Laplace domain; WAS) is the Laplace transformed vertical gust velocity ; S is a reference area 
and { 4s)) is the vector of Laplace transformed generalized displacements. 

To use modem control system analysis and design techniques, it is necessary to cast them in 
Linear Time Invariant (LTI) state space form. The common practice is to match rational function 
approximations to generalized aerodynamic loads calculated for harmonic motion at a set of 
reduced frequencies (Ref. 45). There is a resulting increase in the order of the LTI state space 
model due to the addition of aerodynamic states. This increase in size can be quite signrfcant. 
With n generalized displacements, each lag term in the commonly used Roger approximation (see 
Ref. 45 for further detail) adds n states to the model order. Since four lag terms are usually needed 
for a reasonable approximation in this method, 4n states are added to the system. This makes it 
computationally expensive to carry out any control system analysis and behavior sensitivity 
analysis using state space techniques. In the Minimum State Method of Karpel (Ref. 44 ), the 
functional dependence of the generalized aerodynamic force matrix on the Laplace variable, is 
approximated by a rational expression of a special form so as to reduce the number of added 
states needed to achieve given quality of fit. 

Given the generalized aero forces in simple harmonic motion for a number of reduced 
frequencies, it is possible to match the approximation exactly to the data for k= 0 and one other 
reduced frequency. This determines the matrices P,, P2, P3. Choosing R to be a diagonal matrix 
with negative elements, the matrices D and E are determined in an iterative process so that the 
approximation fits the rest of the data in a least- squares manner. (Figure 14.). 

TIfE SMALL PERTURBATIONS LAPWCE TRAESFORMED EQ. OF kfOTION OF AN 
ELASTIC AIRPLANE IS LEVEL FLIGHT. 

W d J )  1[.Wls2 + [ C I S +  [lull(ds)) - qd CQk.v~4l{d~)l= qd ( Q d d a 4 -  

PURPOSE OF FlSlTE STATE MODELISG : 
TIAIE ISVARIAAT STATE SPACE F0R.M 

CAST EQ. OF MOTION IN LINEAR 

PRISCIPLE RATIONAL FUNCTION APPROXIMATIONS 
AIRLOADS IN TERMS OF LAPWCE VARIABLE 

OF UNSTEADY 

PRICE ADDED STATES 

iWl?clMMu\.l STATE APPROXIMATION FORM : 

cq*,1= CP,lS2 + CPzls+ CP,I+ CDlCrl- R I - ' C m  

MATCHING PROCESS : 

' GENERALIZED AERO FORCES ARE GIVEN FOR HARMONIC ,MOTION AT A SET 
OF REDUCED FREQUENCIES 

* A SET O F  AERODYNAMIC LAG TERMS IS CHOSEN : R, 

* P , I S E Q U A T E D T O Q ( k = O )  

P P ARE EXPRESSED IN TERMS OF D.E SO 
SEfk6TED REDUCED FREQUENCY k, 

D.E ARE DETERMINED IN AN ITERATIVE 
THE REST OF THE DATA 

AS TO ENSURE P E R F E n  FIT AT A 

LEAST-SQUARES PROCESS TO FIT 

ADVANTAGE ' 
MINIMAL INCREASE IN MODEL ORDER 

PROBLEMS : 

ITERATIVE PROCESS IS TIME CONSUMING 

RELATIVELY LITTLE EXPERIENCE WITH REAL CONFIGURATIONS 

Fippre 14 

91 1 



SO.ME PRELIMISARY MINIMUM STATE FITS TO A LARGE MATRIX 
OF UXSTEADY AERODYNAIMIC GENERALIZED FORCES 

Order reduction of the state space model used for senfoaeroelastic stability and control analysis is 
essential for synthesis purposes in order to make the analysis cycle as computationally fast as 
possible. This motivates the choice of the Minimum State Approximation for finite state unsteady 
aerodynamic modeling in the current research. Preliminary tests of the quality of approximation 
achieved when applied to a large matrix of generalized aerodynamic forces show promising results. 
A 44 x 44 matrix of generalized aero forces for the YF16 airplane with tip missiles is 
approximated usiig only 22 lag terms. Comparison with a one lag term Roger approximation 
(which will add 44 aerodynamic states to the model) shows an advantage of the minimum state 
approach (Figure 15.). 

SOME RECENT EXAMPLES OF QUALrrY OF FlT FOR A -16 COMPLETE .\IC 
COSFIGLRATION : 

( POLYSOMlAL GENERALIZED COORDINATES ) 

SOME LOW ORDER SHAPE FUNCTIONS FOR THE WING BOX 
j l ( X Y ) ' I .  /t(xY)=X* L ( w ) = *  
h HlGHER ORDER SHAPE FUNCnON :h, (x,v)-+ 

ROGER APPROXIMATION BASED ON I LAG (44 ADDED STATES) 

MINIMUM STATE BASED O N  22 LAGS (22 ADDED STATES) 
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COSTROL SYSTEM MODELING 

A block diagram of the actively controlled semoaeroelastic system is shown in figure 16. Airplane 
motions (acceleration and angular rates) are sensed by a set of sensors placed at different points 
on the structure. The resulting signals are used as inputs to the control law block which 
commands control surface actuators. The control surface motions guarantee stability and 
desirable dynamic response of the complete system. 

For the control system, only sizing type design variables are considered at present to keep the 
balance in our approach, and these are the coefficients of numerator and denominator 
polynomials in the control law transfer functions. Control surface locations, sensor locations, the 
structure of the control system and order of transfer functions are preassigned. It is assumed that 
sensor and actuator transfer function are given, although the formulation is general enough to 
allow treating their elements as design variables as well. 

I I I I 

seniors conlrol laws 

1 
I 

---- 
bn sn + ... + b, I + b, 

1 r -----  
In- I an-l + ... + 01 I + 4 

1 -  1 

t 
In + ... + dl I + d, 

I I -  I" + ... + CI I + 
I -  

airplane dynamics Jcflcctionr 

(rtructural dynamics/ 

unsteady aerodynamics) I---- 

control commands 

I 
gust excitation 

Figure 16 
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LTI STATE SPACE MODEL AND STABILITY ANALYSIS 

Formulations of the state space control augmented senroaeroelastic equations of motions can be 
found in many works on active flutter suppression (e.g. Ref. 49). A transfer function model of an 
element of the control system (whether sensor, actuator or a control law) can be transformed into 
a state space model, where the A, B, C and D matrices are explicitly expressed in terms of the 
transfer function numerator and denominator polynomial coefficients. Assembly of the sensor, 
actuator, control law, structural dynamics, gust and unsteady aerodynamics state space models 
leads to the system matrices U, V and W in a LTI state space model of the whole system. These 
matrices are functions of the structural design variables through their dependence on the stiffness 
and mass matrices. They depend on the control system design variables through their dependence 
on :he state space models of the control elements. 

For given flight conditions (Mach number and altitude) the stability of the system is 
determined by the real part of the eigenvalues of a generalized eigenvalue problem. Sensitivity of 
a critical eigenvalue with respect to any design variable, p , is calculated using standard eigenvalue 
sensitivity analysis based on the derivatives : d U/ap, d V/ap and the left and right corresponding 
eigenvectors (+I) ,  (4). It is planned to use the original Ritz functions directly as generalized 
coordinates. This approach leads to an increased order model but avoids natural mode 
calculation and aerodynamic force updates associated with natural mode reduced models. 
Computation times and accuracy will determine whether there is a need to resort to natural 
modes. Alternative approximations to system eigenvalues in terms of structural and control 
system design variables will be studied (Figure 17.). 

STATE SPACE !vlODELS OF ACTUATORS. SESSORS A S D  GUST FILTER : 

i (4 = c AI 1 ( X I )  + c41 (YI )  

W = C CI 1 ( X I )  

i =  A C T  FOR ACTUATORS 
I =  SEN FOR SESSORS 
I =  G FOR GUST 

STATE SPACE .MODEL OF THE COSTROL BLOCK : 

$ : x u , }  = CAu,l(xulv) + [44,1I%4w) 

THE A,B.C.D MATRICES ARE EXPLICITLY EXPRESSED AS A FUNCTION OF THE 
CONTROL SYSTEM DESIGN VARIABLES. 

SYSTEM STATE VECTOR ( x ) = (x ,  x, .. x, ) CONTAINS : 

STRUCTURAL STATES ; ACTUATOR STATES ; SENSOR STATES ; CONTROL LAW 
STATES . GUST STATES ; AERODYNAMIC STATES ASSOCIATED WITH 
GENERALIZED AERO MATRIX ; AERODYNAMIC STATES ASSOCIATED WITH 
GUST VECTOR 

THE CLOSED LOOP STATE SPACE EQUATIONS OF THE COMPLETE SYSTEM : 

CrrJ (W = Cvl (4s)) + (w) UdS) 

STABILITY BY EIGENVALUE ANALYSIS : 

ICU@)1(4)= CV@)1(4) 

EIGENVALUE SENSITIVITY WITH RESPECT TO DESIGN VARIABLE p : 
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STATUS OF MULTIDISCIPLIKARY ANALYSIS AKD 
BEHAVIOR SENSITIVITY 

Figure 18 presents status of research activities associated with the development of the analysis and 
sensitivity capabilities for the multidisciplinary synthesis of wings. It is expected that based on 
these capabilities, it will be practical to synthesize on a preliminary design level realistic 
representations of control augmented wings. The generality of the approximation concepts based 
mathematical programming aproach to synthesis and the realism in modeling are expected to be 
of major importance in coping with complicated multidisciplinary interaction, where little 
experience exists and intuition is often misleading. 

ANALYSIS AND BEHAVIOR SENSITIVITY 
STATUS 

STRUCTURE 

FORhlULATION : ANALYSIS + 
SENSITIVITY + 

ANALYSIS IMPLEILIENTATION : + 
ANALYSIS TESTING : + 
SEXSITIVITY IMPLEMENTATION : + 
SENSITIVITY TESTING : 4- 

APPROXIMATION CONCEPTS 
PERFORMANCE ASSESSED : + 

AERODYNAiMICS # 

+ 
+ 
+ 
+ 
in progress 

CONTROL 

+ 
+ 
+ 
in progress 

in progress 

# AERODYNAiMICS INCLUDE : 
* UNSTEADY AERODYNAMICS FOR SERVOAEROELASTIC ANALYSIS 
* STEADY TRIM AND DRAG CALCULATIONS 

Figure 18 

91 5 



REFERENCES 

1. Schrnit, L.A., ”Structural Optimization - Some Key Ideas and Insights,” in New Directions in 
Optimum Structural Design, edited by Atrek, E., Gallagher, R.H., Ragsdell, K.M., and 
Zienkiewicz, O.C., John \Viley and Sons, 1984. 
2. Ashley, H., ”On making things the best - The aeronautical uses of optimization,” Journal of 
Aircraft, Vol.l9,No.l,January 1982,pp. 5-28. 
3. Lansing, W., Lerner, E. and Taylor, R.F., ”Applications of Structural Optimization for 
Strength and Aeroelastic Design Requirements,” AGARD-R-664, 1978. 
4. McCullers, LA., ”Automated Design of Advanced Composite Structures,” Mechanics of 
Composite Materials, Zvi Hashin(ed.),Pergamon Press, 1983 
5. Triplett, W.E., ”Flutter Optimization in Fighter Aircraft Design,” in NASA CP-2327 Recent 
Experiences in Multidisciplinary Analysis and Optimization, 1984, pp.47-63. 
6. Shirk, M.H., Hertz, T.J. and Weisshaar, T.A., ”Aeroelastic Tailoring - 
Theory,Practice,Promise,” Journal of Aircraft, Vol. 23,No. 1, January 1986, pp. 6-18. 
7. Haftka, R.T., ”Structural Optimization with Aeroelastic Constraints : A Survey of US 
Applications,” International Journal of Vehicle Design, Vo1.7, No.3-4, 1986, pp. 38 1-392. 
8. Weisshaar, T.A., ”Aeroelastic Tailoring - Creative Uses of Unusual Materials,” A I M  Paper 
87-0976-CP, AIAA/ASME/’ASCE/AHS 28th Structures, Structural Dynamics and Materials 
Conference, Monterey,California,April 643,1987. 
9. Lynch,R.W., and Rogers, W.A., ”Aeroelastic Tailoring of Composite Materials to improve 
Performance,” Proceedings of the 16th Structures,Structural Dynamics and Materials Conference, 
1975. 
10. Lynch, R.W, Rogers, W.A, and Braymen, W.W., ”Aeroelastic Tailoring of Advanced 
Composite Structures for Military Aircraft,” AFFDL-TR-76- 100, Volume 1, April 1977. 
11. Haftka, R.T., ”Automated Procedure For Design of Wing Structures to Satisfy Strength and 
Flutter Requirements,” NASA TN D-7264, 1973. 
12. Stames Jr., J.H, and Haftka,R.T., ”Preliminary Design of Composite Wings for 
Buckling,Strength and Displacement Constraints,” Journal of Aircraft, Vol. 16, No.2, August 1979, 

13. Haftka, R.T., ”Optimization of Flexible Wing Structures Subject to Strength and Induced 
Drag Constraints,” AIAA Journal, Vol. 15, pp. 1101-1 106, 1977. 
14. Ned, D.J, Johnson, E.H. and Canfield, R., ”ASTROS - A Multidisciplinary Automated 
Structural Design Tool,” AIAA Paper no. 87-0713 presented at the 28th 
AIM/ASME/ASCE/AHS Structures,Structural Dynamics and Materials Conference, Monterey, 
California, April 1987. 
15. Peloubet, R.P., ”YF 16 Active Control System/Structural Dynamics Interaction Instability,” 

pp.564-570. 

A I M  Paper 75-823, AIAA/ASME/SAE 16ih Structures, Structural Dynamics and Matenas 
Conference, Denver, Colorado, May 1975. 
16. Felt, L.R., Huttsell, J. et al. ”Aeroservoelastic Encounters,” Journal of Aircraft, Vol. 16 No. 
7,July 1979,pp477-483. 
17. Swaim, R.L., ”Aeroelastic Interactions with Flight Control,” A I M  Paper 83-2219, in AIAA 
Conference on Guidance and Control, 1983. 
18. Miller,G.D., Wykes, J.H, and Bronsan,M.J., ”Rigid Body/Structural Mode Coupling on a 
Forward Swept Wing Aircraft,” Journal of Aircraft, Vol. 20, Aug.1983, pp.696-702. 
19. Weisshaar, T.A., and Zeiler, T.A., ”Dynamic Stability of Flexible Forward Swept Wing 
Aircraft,” Journal of Aircraft, Vol. 20, 1983, pp, 1014-1020. 
20. Yurkovich, R., ”Flutter of Wings with Leading Edge Control Surfaces,” AIAA Paper 86-0897, 
Proceedings of the AIAA/ASME/SAE 27th SLructGres, Structural Dynamics and Materials 
Conference, San Antonio, Texas ,1986. 
21. Brinks, W.H., ”F/A-18 Full Scale Development Test,” The Society of Experimental Test 
Pilots 24th Symposium Proceedings, December 1980, p. 38. 
22. Newsom, J.R., Adams, W.M., hlukhopadhyay, V., Tiffany, S.H., and Abel, I., “Active 
Controls : A look at Analytical Methods and Associated Tools,” ICAS paper ICAS-84-4.2.3, 
Proceedings of the 14th Congress of the International Council of the Aeronautical Sciences, 
Toulouse, France,1984. 
23. Nissim, E., and Abel, I., ”Development and Application of an Optimization Procedure for 
Flutter Suppression using the Aerodynamic Energy Concept,” NASA TP  1137, February, 1978. 
24. Nissim, E., and Lottati, I., ”Active External Store Flutter Suppression in the YF-17 Flutter 
Model,” Journal of Guidance and Control, Vol.2,NoS,Sept-Oct. 1979, pp. 395-40 1. 

91 6 



25. Liebst, B.S., Garrard, W.L., and Adams, W.M., "Design of an Active Flutter Suppression 
System," Journal of Guidance,Control and Dynamics, Vol. 9, No. 1, Jan. - Feb. 1986, pp. 64-71. 
26. Rimer, M., Chipman, R., and hluniz, B., "Control of a Forward Swept Wing Configuration 
Dominated by Flight Dynamics/Aeroelastic Interactions," Journal of Guidance,Control and 
Dynamics, Vol. 9, No. 1, January-February 1986,pp.72-79. 
27. Tolson, R.H., and Sobieszczanski-Sobieski, J., " Multidisciplinary Analysis and Synthesis : 
Needs and Opportunities," AIAA Paper 85-0584. 
28. Sobieszczanski-Sobieski, J., and Haftka, R.T., "Interdisciplinary and Multilevel Optimum 
Design," in Computer Aided Optimal Design : Structural and Mechanical Systems, Mota Soares, 
C. A,, (ed.), Springer Verlag 1987. 
29. McGeer, T., Wing Design for Minimum Drag with Practical Constraints," Journal of 
Aircraft, Vol. 21, No. 11, November 1984, pp. 879-886. 
30. Gilbert, M.G., Schmidt, D.K., and Weisshaar, T.A., "Quadratic Synthesis of Integrated Active 
Controls for an Aeroelasic Forward Swept Wing Aircraft," AIAA Paper 82- 1544, Proceedings of 
the 1982 AIAA Guidance and Control Conference, 1982. 
31. Zeiler, T.A., and Weisshaar, T.A., "Integrated Aeroservoelasic Tailoring of Lifting Surfaces,' 
Journal of Aircraft, Vol. 25, No. 1, January 1988, pp. 76-83. 
32. Weisshaar, T.A., Wewsom, J.R., Zeiler, T.A., and Gilbert, M.G., "Integrated 
Structure/Control Design - Present Methodology and Future Opportunities," ICAS Paper 
ICAS-86-4.8.1, presented at the 1986 Conference of the International Council of the Aeronautical 
Sciences, London, England. 
33. Grossman, B., Strauch, G.J., Eppard, W.M., Gurdal, Z., and Haftka, R.T., "Integrated 
Aerodynamic/Structural Design of a Sailplane Wing," AIAA Paper 86-2623, AIAA Aircraft 
Systems,Design & Technology Meeting, October, 1986. 
34. Haftka, R.T., Grossman, B., Eppard, W.M., and Kao, P.J., "Efficient Optimization of 
Integrated Aerodynamic-Structural Design," Proceedings of the International Conference on 
Inverse Design Concepts and Optimization in Engineering Sciences - 11, October 26-28,1987, 
University Park, Pennsylvania. 
35. Barthelemy, J.F.M, and Bergen, F.D., "Shape Sensitivity Analysis of Wing Static Aeroelastic 
Characteristics", paper AIAA 88-2301, presented at the AIAA/ASME/ASCE/AHS 29th 
Structures,Structural Dynamics and Materials Conference, Williamsburg, Virginia, 1988. 
36. Gilbert, M.G., "Sensitivity Method for Integrated Structure/Active Control Law Design," in 
NASA CP 2457, Sensitivity Analysis in Engineering, 1987. 
37. Giles, G.L., "Equivalent Plate Analysis of Aircraft Wing Box Structures with General 
Planform Geometry," Journal of Aircraft, Vo1.23, No.11, November 1986, pp.859-864. 
38. Giles, G.L., "Further Generalization of the Equivalent Plate Representation for Aircraft 
Structural Analysis," AIAA Paper No. 87-0721-CP, AIAA/ASME/ASCE/AHS 
Structures,Structural Dynamics and Materials Conference, Monterey, California, April 1987. 
39. Pittman, J.L, and Giles, G.L., "Combined Nonlinear Aerodynamic and Structural Method for 
the Aeroelastic Design of Three Dimensional Wing in Supersonic Flow," AIAA paper No. 
86- 1769, AIAA 4th Applied Aerodynamics Conference, San Diego,Califomia, 1986. 
40. Lottati, I., and Nissim, E., "Three Dimensional Oscillatory Piecewise Continuous Kernel 
Function Method",(in three parts), Journal of Aircraft, Vol. 18, No. 5, May 1981, pp.346-363. 
41. Lottati, I. and Nissiim,E., "Nonplanar,Subsonic,Three Dimensional Oscillatory Piecewise 
Continuous Kernel Function Method", Journal of Aircraft, Vol. 22,No. 12,December 1985, pp. 

42. Lottai, I., "Induced Drag and Lift of Wing by the Piecewise Continuous Kernel Function 
Method", Journal of Aircraft, Vol. 21, No. 11, pp. 833-834. 
43. Nissim, E., and Lottati, I., "Supersonic Three Dimensional Oscillatory Piecewise Continuous 
Kernel Function Method," Journal of Aircraft, Vol. 20, No. 8, August 1983, pp.674-681. 
44. Karpel, M., "Design for Active Flutter Suppression and Gust Alleviation using State Space 
Aeroelastic Modeling," Journal of Aircraft, Vo1.19, No. 3, March 1982, pp. 221-227. 
45. Tiffany, S.H., and Adams, W.M., "Nonlinear Programming Extensions to Rational Function 
Approximations of Unsteady Aerodynamics," Proceedings of the 28th Structures,Structural 
Dynamics and Materials conference, Monterey,California, 1987. 
46. Moore, R.L.,. "Aeroservoelastic Stability Analysis of an Airplane with a Control 
Augmentation System", Phd Thesis, The Ohio State University, 1978 (Available from University 
Microfilms International, No. 7902191) 

1043- 1048. 

91 7 



47. Watkins, C.E., Runyan, H.L., and Woolston, D.S., "On the Kernel Function of the Integral 
Equation Relating the Lift and Downwash of Oscillating Finite Wings in Subsonic Flow," NACA 
Report 1234,1955. 
48. Rowe, W.S., "Comparison of Analysis Methods used in Lifting Surface Theory," in 
Computational Methods in Potential Aerodynamics, edited by L. hlorino, Springer Verlag, 1985. 
49. Mukhopadhyay, V., Newsom, J.R., and Abel, I., "A Method for Obtaining Reduced Order 
Control Laws for High Order Systems Using Optimization Techniques", KASA Tecnical Paper 
1876, 1981. 

BIBLIOGRAPHY 

1. Rogers, W.A., Brayman, W.W., and Shirk, M.H., "Design, Analysis, and Model Tests of an 
Aeroelastically Tailored Lifting Surface,' Journal of Aircraft, Vol. 20, No. 3, March 1983, pp. 

2. Wilkinson, K., Markowitz, J., Lerner, E., George, D., and Batill, S.M., "FASTOP - A Flutter 
and Strength Optimization Program for Lifting Surface Structures," Journal of Aircraft, Vo1.14, 
No.6, June 1977. 
3. Markowitz, J., and Isakson, G., "FASTOP3 - A Strength,Deflection and Flutter Optimization 
Program for Metallic and Composite Structures," 
AFFDL - TR - 78 - 50,May 1978. 
4. Isakson G., Pardo H., Lerner E. and Venkayya V.B. 
ASOP3 - A Program for Optimum Structural Design to Satisfy Strength and Deflection 
Constraints. Journal of Aircraft, Vol. 15, No. 7, July 1978, pp. 422-428. 
5. Lerner, E., 'The Application of Practical Optimization Techniques in the Preliminary 
Structural Design of a Forward - Swept Wing," The Second International Symposium on 
Aeroelasticity and Structural Dynamics, Aachen, W.Germany, April 1-3, 1985, DGLR-Bericht 

208-215. 

85-02. 
6. Lecina, G. and Petiau, C., "Advances in Optimal Design with Composite Materials," 
in : Computer Aided Optimal Design : Structural and Mechanical Systems, C.A.Mota Soares 
(ed.), Springer-Verlag, 1987. 

91 8 


